Effects of nonesterified fatty acid availability on tissue-specific glucose utilization in rats in vivo.
نویسندگان
چکیده
The pathophysiological significance of the glucose-fatty acid cycle in skeletal muscle in vivo is uncertain. We have examined the short term effects of increased availability of nonesterified FFA on tissue-specific glucose uptake and storage in rat tissues in vivo basally and during a hyperinsulinemic (150 mU/liter) euglycemic clamp. Circulating FFA were elevated to 2 mmol/liter (FFA 1) or 4 mmol/liter (FFA 2). Elevated FFA produced a dose-dependent inhibition of myocardial glucose utilization in both basal (FFA1, 42%; FFA2, 68%; P less than 0.001, by analysis of variance) and clamp groups (FFA1, 39%; FFA2, 49%; P less than 0.001) and also suppressed brown adipose tissue glucose utilization during the clamp (-42%, P less than 0.001). In contrast to heart, glucose utilization in skeletal muscle was suppressed by FFA only in the FFA1 basal group (-36%, P less than 0.001); in other groups (e.g., FFA2 clamp) elevated FFA produced increased skeletal muscle glucose utilization (+68%, P less than 0.001) that was directed toward glycogen (+175%, P less than 0.05) and lipid deposition (+125%, P less than 0.005). FFA stimulated basal glucose utilization in white (e.g., FFA2, +220%, P less than 0.005) and brown adipose tissue (e.g., FFA2, +200%, P less than 0.005). Thus elevated FFA can acutely inhibit glucose utilization in skeletal muscle in addition to cardiac muscle in vivo supporting a possible role for the glucose-fatty acid cycle in skeletal muscle in acute insulin resistance. However, at high levels or with elevated insulin, FFA stimulates glucose utilization and storage in skeletal muscle. By promoting accumulation of glucose storage products, chronic elevation of FFA may lead to skeletal muscle (and therefore whole body) insulin resistance.
منابع مشابه
Partial A1 adenosine receptor agonist regulates cardiac substrate utilization in insulin-resistant rats in vivo.
Reducing the availability and uptake of fatty acids is a plausible pharmaceutical target to ameliorate glucose intolerance and insulin resistance. CVT-3619 [2-{6-[((1R,2R)-2-hydroxycyclopentyl) amino]purin-9-yl(4S,5S,2R,3R)-5-[(2-fluorophenylthio)methyl]oxolane-3,4-diol] is a partial A(1) adenosine receptor agonist with antilipolytic properties. Aims of the present study were to examine the acu...
متن کاملIn vivo measurement of energy substrate contribution to cold-induced brown adipose tissue thermogenesis.
The present study was designed to investigate the effects of cold on brown adipose tissue (BAT) energy substrate utilization in vivo using the positron emission tomography tracers [(18)F]fluorodeoxyglucose (glucose uptake), 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid [nonesterified fatty acid (NEFA) uptake], and [(11)C]acetate (oxidative activity). The measurements were performed in rats ad...
متن کاملThe PPARα/γ Agonist, Tesaglitazar, Improves Insulin Mediated Switching of Tissue Glucose and Free Fatty Acid Utilization In Vivo in the Obese Zucker Rat
METABOLIC FLEXIBILITY WAS ASSESSED IN MALE ZUCKER RATS lean controls, obese controls, and obese rats treated with the dual peroxisome proliferator activated receptor (PPAR) α/γ agonist, tesaglitazar, 3 μ mol/kg/day for 3 weeks. Whole body glucose disposal rate (R d ) and hepatic glucose output (HGO) were assessed under basal fasting and hyperinsulinemic isoglycemic clamp conditions using [3,(3...
متن کاملHeart-type fatty acid-binding protein reciprocally regulates glucose and fatty acid utilization during exercise.
The role of heart-type cytosolic fatty acid-binding protein (H-FABP) in mediating whole body and muscle-specific long-chain fatty acid (LCFA) and glucose utilization was examined using exercise as a phenotyping tool. Catheters were chronically implanted in a carotid artery and jugular vein of wild-type (WT, n = 8), heterozygous (H-FABP(+/-), n = 8), and null (H-FABP(-/-), n = 7) chow-fed C57BL/...
متن کاملIn Vivo Multi-Tissue Efficacy of Peroxisome Proliferator-Activated Receptor-γ Therapy on Glucose and Fatty Acid Metabolism in Obese Type 2 Diabetic Rats
OBJECTIVE To identify the disturbances in glucose and lipid metabolism observed in type 2 diabetes mellitus, we examined the interaction and contribution of multiple tissues (liver, heart, muscle, and brown adipose tissue) and monitored the effects of the Peroxisome Proliferator-Activated Receptor-γ (PPARγ) agonist rosiglitazone (RGZ) on metabolism in these tissues. DESIGN AND METHODS Rates o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 82 1 شماره
صفحات -
تاریخ انتشار 1988